• +476.19
    Рейтинг
    23.09
    Сила
27 Jan 21:43 avatar

Тварь библейская и путь её.

Продолжая изыскания по циклам.
Пришел к выводу что цикл хоть вещь и гармоничная, но развивается по определенным законам, свои мысли изложу позднее их нужно еще оформить, а пока наткнулся на любопытный сайтик, с которого тиснул старую загадку. Мы же ведь этим занимаемся, решаем загадки разве нет?))

Священные пропорции и мост ослов.
Для египтян самой простой теоремой считалась теорема о прямоугольном треугольнике, в котором стороны находились в соотношении 3:4:5 Сами же числа считались священными. Да и в сумме они давали число 12 — самое священное число всех времен и народов! Для тех, у кого с памятью было совсем худо, применялась считалочка: бог Гор — это 3, бог Осирис — это 4, а богиня Исида — это 5. Самое большое число в этой египетской Троице по заслугам досталось Исиде как Матери, поменьше — Осирису, как Отцу, и самое малое — Гору, их Сыну. Запомнить считалочку было просто. Даже детям. Тот, кто несмотря на все ухищрения учителей, не мог решить теорему о прямоугольном треугольнике, уподоблялся длинноухому глупцу, тупоголовому ослу, не способному пройти по мосту. Упрямство осла хорошо известно: его ни за что не сдвинуть с места, если перед ним появится непонятная или незнакомая преграда. Конечно, эта черта характера ослов происходила не от глупости, а от излишней перестраховки и супер осторожности. Но разве он мог представить свои разумные аргументы людям в оправдание своих действий: у них свой взгляд на вещи и поступки.
Попробуем и мы решить теорему египтян, чтобы не уподобиться четвероногому животному, а затем постараемся сообразить, как эти знания применить как при строительстве пирамид, так и при разметке полей. Благодаря Пифагору решение такой задачи для большинства не представит трудности: З2 + 42 = 52 или 9 + 16 = 25. Но неужели и древние египтяне, чтобы определить длину третьей стороны прямоугольного треугольника по известным длинам двух других тоже сначала возводили числа в квадрат, а затем делали обратную операцию: извлекали корень? Может быть, у них был иной, более простой способ дли решения таких задач и свои, особые стандарты, которыми они руководствовались при расчетах?
Решив египетский треугольник алгебраическим способом, мы еще только дошли до середины «моста ослов» и нам еще грозит опасность быть причисленными к длинноухим глупцам и упрямцам. Чтобы преодолеть вторую половину «моста», нужно еще решить задачу о египетском треугольнике геометрическим способом. Здесь уже есть варианты, и каждый в меру своих способностей и фантазии может выбрать свой путь, ведущий на «тот берег».
Любой треугольник можно построить геометрическим способом, если известна длина всех трех сторон и длина двух сторон и угол между ними, если задано соотношение сторон треугольника. Последнее у нас действительно задано как 3: 4: 5.
Для доказательства теоремы о египетском треугольнике необходимо использовать отрезок прямой известной длины А-А1 (рис. 2). Он будет служить масштабом, единицей измерения, и позволит определить длину всех сторон треугольника. Три отрезка А-А1 равны по длине наименьшей из сторон треугольника ВС, у которой соотношение равно 3. А четыре отрезка А-А1 равны по длине второй стороне, у которой соотношение выражается числом 4. И, наконец, длина третьей стороны равна пяти отрезкам А-А1. А дальше, как говорится, дело техники. На бумаге проведем отрезок ВС, являющийся наименьшей стороной треугольника. Затем из точки В радиусом, равным отрезку с соотношением 5, проводим циркулем дугу окружности, а из точки С —дугу окружности радиусом, равным длине отрезка с соотношением 4. Если теперь точку пересечения дуг соединить линиями с точками В и С, то получим прямоугольный треугольнике соотношением сторон 3: 4: 5. Что и требовалось доказать.
Теперь можно спокойно пройти вторую половину «моста ослов» и принять поздравления от тех, кто сделал это на несколько тысяч лет раньше. Но они почему-то смеются и показывают на середину моста, предлагая вернуться. Но ведь задача решена верно! Неужели что-то упущено? Или что-то очень важное не понято? Придется вернуться на середину «моста ослов» и еще раз подумать. Так где же. как говорят русские, «зарыта собака»? Ведь треугольник так прост! Всего три цифры: 3, 4, 5, как три таинственные карты из «Пиковой дамы» А. С. Пушкина, дающие крупный выигрыш. Конечно, если хорошо подумать, треугольник не так уж и прост, как кажется с первого взгляда. Он гениален! Попробуйте подобрать последовательный ряд из других трех целых цифр, чтобы они образовали прямоугольный треугольник. Ничего не получится. Так кто же придумал этот геометрический шедевр: человек или природа? Такое могла создать только сама природа.
Итак, с чего же начать? Разве вот с этого: 3 + 5 = 8. а число 4 составляет половину числа 8. Стоп! Числа 3, 5, 8… Разве они не напоминают что-то очень знакомое? Ну конечно, они имеют прямое отношение к золотому сечению и входят в так называемый «золотой ряд»: 1, 1, 2, 3, 5, 8, 13, 21… В этом ряду каждый последующий член равен сумме двух предыдущих: 1 + 1= 2. 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8 и так далее. Выходит, что египетский треугольник имеет отношение к золотому сечению? И древние египтяне знали, с чем имели дело? Но не будем торопиться с выводами, чтобы снова не оказаться потом на середине «моста ослов». Необходимо выяснить детали поточнее.
Выражение «золотое сечение», как считают некоторые, впервые ввел в XV веке Леонардо да Винчи. Но сам «золотой ряд» стал известен в 1202 году, когда его впервые опубликовал в своей «Книге о счете» итальянский математик Леонардо Пизанский. прозванный Фибоначчи. Однако почти за две тысячи лет до них золотое сечение было известно Пифагору и его ученикам. Правда, называлось оно по-другому, как «деление в среднем и крайнем отношении». А вот египетский треугольник с его «золотым сечением» был известен еще в те далекие времена, когда строились пирамиды в Египте, когда процветала Атлантида.
Так кому же принадлежит первенство в этих выдающихся знаниях? Ясно, что их корни скрываются в глубине тысячелетий или в просторах космоса. О золотом сечении «забыли» в средние века, когда инквизиторы в церковных мантиях в борьбе с новыми веяниями в науке мечом и огнем уничтожили многие знания и их носителей, среди которых было много выдающихся мыслителей и посвященных. Но о нем вспомнили в XIX веке. Позднее оно нашло широкое применение в архитектуре, искусстве, полиграфии, компьютерах и в других областях человеческой деятельности.

Когда говорят о золотом сечении, то чаще всего имеют в виду гармоничное соотношение высоты к ширине или соотношение последовательных отрезков, расположенных на одной прямой и находящихся в отношении друг к другу согласно «золотому» ряду чисел. Здание, в котором отношение высоты к ширине или отношение между высотами отдельных надстроек-этажей укладывается в «золотой» ряд, выглядит гармонично. Также гармонично выглядит и человек, в котором тоже нашли пропорции золотого сечения (рис. 3). Даже спираль можно построить в полном соответствии с золотым сечением (рис. 4). Очевидно, все в мире подчиняется золотому правилу. И всякое искусственное его нарушение приводит к искажению законов природы и космоса, вносят дисгармонию в окружающее пространство.

А как же египетский треугольник? Ведь у него отношение катетов, то есть «ширины» к высоте, составляет 3:4 и как бы выпадает из «золотого» ряда чисел? Но так ли это? Пристроим к египетскому треугольнику АВС (рис. 5) равный ему треугольник ВСД так, чтобы катет ВС, в цифровом выражении равный 4, был общим. Получим равнобедренный треугольник АВД. В нем отношение высоты к основанию ВС: АД = 4:6 = 2:3. Да, те самые две трети! Не правда ли, звучит как у А. С. Пушкина в его поэме «Евгений Онегин»: «Ужель та самая Татьяна...» Как мы понимаем, соотношение 2:3 — из «золотого» ряда.

Посмотрим теперь другой параметр: отношение высоты к боковой стороне: ВС: АВ = ВС: ВД = 4:5. Подобное соотношение применялось в прошлом и применяется в наше время в прикладных искусствах. В древние времена оно находило применение в архитектуре.

А теперь пристроим к египетскому треугольнику АВС равный ему треугольник АСЕ так, чтобы уже другой катет АС стал общим для них. Получим равнобедренный треугольник АВЕ, в котором отношение высоты к основанию АС: ВЕ = 3:8. Числа 3 и 8 тоже из «золотого» ряда, но они не являются соседними в ряду. Оказывается, это не служит препятствием для создания гармоничной пропорции. Более того, пропорция, образованная этим равнобедренным треугольником, где АС: ВЕ = 3: 8. по мнению некоторых специалистов, в частности Р. Энгель-Гардта (1919 г.), дает «чудесную гармонию». Таким образом, получается, что египетский треугольник прямо и косвенно связан с золотым сечением.

Интересно, можно ли после таких рассуждений сойти с «моста ослов»? Да, только теперь с криками «Ура!» или «Эврика!» можно с полным правом завершить переход злополучного моста и принять поздравления от тех, кто на другом берегу давно сгорал от любопытства и недоумения: неужели современные люди так крепко забыли знания своих предков? Или потеряли способность к логическому мышлению, если решение такой простой задачи заняло столько времени? И мне приятно, что не пришлось краснеть перед предками. Сама же задача о построении прямоугольного треугольника с соотношением сторон 3: 4: 5 уже решается и другим способом, который известен современной геометрии как деление отрезка в крайнем и среднем отношении.

shaping.ru/mku/babanin01.asp